Search results for "learning machine"

showing 10 items of 32 documents

Extreme minimal learning machine: Ridge regression with distance-based basis

2019

The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…

0209 industrial biotechnologyComputer scienceCognitive Neuroscienceneuraalilaskentaneuroverkot02 engineering and technologyrandomized learning machinesSet (abstract data type)extreme learning machine020901 industrial engineering & automationArtificial Intelligenceextreme minimal learning machine0202 electrical engineering electronic engineering information engineeringExtreme learning machineta113Training setBasis (linear algebra)Model selectionminimal learning machineOverlearningComputer Science ApplicationskoneoppiminenTransformation (function)020201 artificial intelligence & image processingAlgorithmNeurocomputing
researchProduct

Online fitted policy iteration based on extreme learning machines

2016

Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to learn useful policies and the poor scalability to high-dimensional problems due to the use of local approximators. This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing data and enables the use of global approximators by reformulating the valu…

0209 industrial biotechnologyInformation Systems and ManagementRadial basis function networkArtificial neural networkComputer sciencebusiness.industryStability (learning theory)02 engineering and technologyMachine learningcomputer.software_genreManagement Information Systems020901 industrial engineering & automationArtificial IntelligenceBellman equation0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Reinforcement learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerSoftwareExtreme learning machineKnowledge-Based Systems
researchProduct

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation

2019

Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…

Artificial intelligencelcsh:Computer engineering. Computer hardwareExtreme learning machineEnsemble methodsComputer scienceBinary numberlcsh:TK7885-7895Feature selection02 engineering and technologyIntrusion detection systemlcsh:QA75.5-76.95Machine learning0202 electrical engineering electronic engineering information engineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Multi layerExtreme learning machinebusiness.industryIntrusion detection system020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsBinary classificationFeature selectionSignal ProcessingSoftmax function020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligencebusinessClassifier (UML)EURASIP Journal on Information Security
researchProduct

Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks

2016

Typically, hardware implemented neural networks are trained before implementation. Extreme learning machine (ELM) is a noniterative training method for single-layer feed-forward (SLFF) neural networks well suited for hardware implementation. It provides fixed-time learning and simplifies retraining of a neural network once implemented, which is very important in applications demanding on-chip training. This study proposes the data flow of a software support tool in the design process of a hardware implementation of on-chip ELM learning for SLFF neural networks. The software tool allows the user to obtain the optimal definition of functional and hardware parameters for any application, and e…

Artificial neural networkComputer sciencebusiness.industry020208 electrical & electronic engineering02 engineering and technologyComputer Science ApplicationsData flow diagramSoftwareControl and Systems EngineeringGate arrayEmbedded system0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSystem on a chipElectrical and Electronic EngineeringbusinessEngineering design processComputer hardwareInformation SystemsExtreme learning machineIEEE Transactions on Industrial Informatics
researchProduct

BELM: Bayesian Extreme Learning Machine

2011

The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap…

Computer Networks and CommunicationsComputer scienceComputer Science::Neural and Evolutionary ComputationBayesian probabilityOverfittingMachine learningcomputer.software_genrePattern Recognition AutomatedReduction (complexity)Artificial IntelligenceComputer SimulationRadial basis functionExtreme learning machineArtificial neural networkbusiness.industryEstimation theoryBayes TheoremGeneral MedicineComputer Science ApplicationsMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsSoftwareIEEE Transactions on Neural Networks
researchProduct

Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

2018

Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neur…

Computer Networks and CommunicationsComputer scienceReal-time computingParameterized complexitylcsh:TK7800-836002 engineering and technologyextreme learning machine0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)Electrical and Electronic EngineeringEnginyeria d'ordinadorsField-programmable gate arrayFPGAExtreme learning machineEnginyeria elèctricaArtificial neural networkData stream mininglcsh:Electronics020206 networking & telecommunicationsOS-ELMreal-time learningHardware and ArchitectureControl and Systems Engineeringon-chip trainingSignal Processingon-line learning020201 artificial intelligence & image processingDistributed memoryonline sequential ELMhardware implementationAlgorithm
researchProduct

Analysis of ventricular fibrillation signals using feature selection methods

2012

Feature selection methods in machine learning models are a powerful tool to knowledge extraction. In this work they are used to analyse the intrinsic modifications of cardiac response during ventricular fibrillation due to physical exercise. The data used are two sets of registers from isolated rabbit hearts: control (G1: without physical training), and trained (G2). Four parameters were extracted (dominant frequency, normalized energy, regularity index and number of occurrences). From them, 18 features were extracted. This work analyses the relevance of each feature to classify the records in G1 and G2 using Logistic Regression, Multilayer Perceptron and Extreme Learning Machine. Three fea…

Computer sciencebusiness.industryFeature extractionFeature selectionPattern recognitionRegression analysiscomputer.software_genreStandard deviationKnowledge extractionMultilayer perceptronData miningArtificial intelligencebusinessClassifier (UML)computerExtreme learning machine2012 3rd International Workshop on Cognitive Information Processing (CIP)
researchProduct

Deep CNN-ELM Hybrid Models for Fire Detection in Images

2018

In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…

Contextual image classificationArtificial neural networkComputer sciencebusiness.industryPattern recognition02 engineering and technologyConvolutional neural networkBackpropagationSupport vector machine03 medical and health sciences0302 clinical medicineSoftmax function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)030217 neurology & neurosurgeryExtreme learning machine
researchProduct

Regularized extreme learning machine for regression problems

2011

Extreme learning machine (ELM) is a new learning algorithm for single-hidden layer feedforward networks (SLFNs) proposed by Huang et al. [1]. Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This paper proposes an algorithm for pruning ELM networks by using regularized regression methods, thus obtaining a suitable number of the hidden nodes in the network architecture. Beginning from an initial large number of hidden nodes, irrelevant nodes are then pruned using ridge regression, elastic net and lasso methods; hence, the architectural design of ELM network can be automated. Empirical studies…

Elastic net regularizationArtificial neural networkbusiness.industryComputer scienceCognitive NeuroscienceFeed forwardMachine learningcomputer.software_genreRegularization (mathematics)Computer Science ApplicationsLasso (statistics)Artificial IntelligenceArtificial intelligencebusinesscomputerExtreme learning machineNeurocomputing
researchProduct